Finite $\mathfrak{E l e m e n t} \mathfrak{A n a l y s i s}$ Basis of $\mathcal{F E M}$

 Gebrilel-FallahEG3111 - Finite $\mathcal{E l}$ ement Analysis and Design

1b. Introduction to the basis of FEM: the Weighted Residual Method

Weighted residual methods generate approximate solutions to PDEs.

This is the basis of the general FEM.

As an example, consider the ordinary differential equation

$$
\frac{d u}{d x}+u=0 \quad \text { for } 0 \leq x \geq 1
$$

Subject to boundary condition

$$
u(0)=1
$$

The exact solution is

$$
u(x)=e^{-x}
$$

1b. One Degree of Freedom (DOF) Approximation

- We will use two different weighted residual methods to generate approximations to the exact solution:
(i) Least squares error method
(ii) Galerkin method
- Shape function - propose a form for the approximate solution...
- The simplest approximation to $u(x)$ is a straight line

- The unknown variable c is called the degree of freedom (DOF) of the system.

1b. Residual error

- As an example, consider the ordinary differential equation

$$
\frac{d u}{d x}+u=0 \quad \text { for } 0 \leq x \geq 1
$$

Subject to boundary condition

$$
u(0)=1
$$

- Shape function - propose a form for the approximate solution...
- The simplest approximation to $u(x)$ is a straight line

$$
\tilde{u}(x)=1+c x
$$

- Define the residual error $R(x)$ to be the difference between the exact value of the PDE (zero in this case) and the approximated value. In this example

$$
R(x)=\left(\frac{d \tilde{u}}{d x}+\tilde{u}\right)-\left(\frac{d u}{d x}+\tilde{u}\right)=\left(\frac{d \tilde{u}}{d x}+\tilde{u}\right)
$$

- If the approximation is correct $(\tilde{u}=u)$ then the error $R(x)=0$.
- For the 1 DOF approximation function

$$
R(x)=\frac{d}{d x}(1+c x)+(1+c x)=c+1+c x
$$

1b. (i) Least Squares Method

- To find the best value of c minimise the sum of all the errors squared R^{2}
- Total error

$$
I=\frac{1}{2} \int_{0}^{1} R^{2} d x
$$

- Minimum error occurs when

$$
\frac{d I}{d c}=0
$$

with respect to the DOF c such that

$$
\begin{aligned}
& \frac{d I}{d c}=\frac{1}{2} \int_{0}^{1} \frac{d\left(R^{2}\right)}{d c} d x \\
& \frac{d I}{d c}=\frac{1}{2} \int_{0}^{1} \frac{2 R d R}{d c} d x \\
& \frac{d I}{d c}=\int_{0}^{1} \frac{d R}{d c} R d x=0 \quad \text { Eq } 1.1
\end{aligned}
$$

1b. (i) Least Squares Method (continued)

- In this example

$$
\begin{gathered}
\frac{d R}{d c}=1+x \\
\frac{d I}{d c}=\int_{0}^{1}(1+c+c x)(1+x) d x=0 \\
\frac{d I}{d c}=c \int_{0}^{1}(1+x)^{2} d x+(1+x) d x=0 \\
\frac{d I}{d c}=c\left[\frac{(1+x)^{3}}{3}\right] \frac{1}{0}+\left[\frac{(1+x)^{2}}{2}\right] 1 \\
\frac{d I}{d c}=c\left(\frac{8}{3}-\frac{1}{3}\right)+\left(2-\frac{1}{2}\right) \\
\frac{d I}{d c}=\frac{7 c}{3}+\frac{3}{2}=0 \\
c=-\frac{3}{3} \times \frac{3}{7}=-\frac{9}{14}
\end{gathered}
$$

1b. (i) Least Squares Method

Linear (1 DOF) approximation vs exact solution

1b. (ii) Galerkin Method

- The Galerkin method is the basis of the FEM and is a generalisation of Eq 1.1

$$
\int_{0}^{1} w(x) R d x=0
$$

Where $w(x)$ is a weighting function

- For the least squares method

$$
w(x)=\frac{d R}{d c}
$$

- For the Galerkin method

$$
w(x)=\frac{d \tilde{u}}{d c}
$$

1b. (ii) Galerkin Method (continued)

- In this example, here we write condition for optimal degree of freedom DOF as

$$
\int_{0}^{1} \frac{d \tilde{u}}{d c} R d x=0
$$

- We replace $\left(\frac{d R}{d c}\right.$ by $\left.\frac{d \tilde{u}}{d c}\right)$
- We know

$$
\tilde{u}(x)=1+c x
$$

- Gives

$$
\begin{gathered}
\frac{d \tilde{u}}{d c}=x \\
\frac{d \tilde{u}}{d c}=\int_{0}^{1} x(1+c+c x) d x=0 \\
\frac{d \tilde{u}}{d c}=c \int_{0}^{1} x(1+x) d x+\int_{0}^{1} x d x=0
\end{gathered}
$$

1b. (ii) Galerkin Method (continued)

$$
\begin{gathered}
\frac{d \tilde{u}}{d c}=c\left[\frac{x^{2}}{2}+\frac{x^{3}}{3}\right]_{0}^{1}+\left[\frac{x^{2}}{2}\right]_{0}^{1}=0 \\
\frac{d \tilde{u}}{d c}=\frac{5 c}{6}+\frac{1}{2}=0 \\
c=-\frac{1}{2} \times \frac{6}{5}=-\frac{3}{15}
\end{gathered}
$$

1b. (ii) Galerkin
Linear (1 DOF) approximation vs exact solution

1b. Discretisation, shape functions, nodes and elements

- In general, the FEM discretises a body into elements

1D axis

1D discretised axis

1b. Linear shape functions

- The degrees of freedom (DOF) are the values at the nodes $\left(u_{1}, \ldots, u_{5}\right)$ to ensure continuity of the approximation function $\tilde{u}(x)$ between elements

1b. Quadratic shape functions

Quadratics need three values per element to define them, so introduce another DOF at mid-nodes

COMSOL has:

- Linear
- Quadratic
- Cubic
- Quartic
- Quintic

9 DOF

1b. Discretisation and accuracy

- Increasing the number of DOF increases the accuracy of the solution
- Two ways to increase the DOF:
$>$ Increase the number of elements, i.e. decrease the size of the elements
$>$ Increase the order of the shape function, i.e. go from linear (1 DOF per element) to quadratic (2 DOF per element).

Approximating a circle with linear shape functions

Example \#1: quadratic shape function

Use Galerkins method to find the approximate solution when the shape function is a second order polynomial (i.e. a quadratic curve rather than a linear curve).

$$
\tilde{u}(x)=1+c_{1} x+c_{2} x^{2}
$$

As there are now 2 DOF (c_{1} and c_{2}) there are also two simultaneous equations to solve

$$
\begin{aligned}
& \int_{0}^{1} \frac{\partial \tilde{u}}{\partial c_{1}} R d x=0 \\
& \int_{0}^{1} \frac{\partial \tilde{u}}{\partial c_{2}} R d x=0
\end{aligned}
$$

Plot the result against the exact solution for comparison
Exercise sheet \#1

Example \#2: 2 piecewise linear shape functions

Use Galerkins method to find the approximate solution when the shape function is two straight lines such that

$$
\tilde{u}(x)=\left\{\begin{array}{cc}
1+2\left(u_{1}-1\right) x & \text { for } 0 \leq x \leq \frac{1}{2} \\
\left(2 u_{1}-u_{2}\right)+2\left(u_{2}-u_{1}\right) x & \text { for } \frac{1}{2} \leq x \leq 1
\end{array}\right.
$$

There are now two DOF (u_{1} and u_{2}) and hence two simultaneous equations to solve

$$
\begin{aligned}
& \int_{0}^{1} \frac{\partial \tilde{u}}{\partial u_{1}} R d x=0 \\
& \int_{0}^{1} \frac{\partial \tilde{u}}{\partial u_{2}} R d x=0
\end{aligned}
$$

Plot the result against the exact solution for comparison

Next section...
(2) $\mathcal{F E M}$ and $\mathcal{E l a s t i c i t y ~ T h e o r y ~}$

